Let $\mathcal{S} = \{T_s : s \in S\}$ be a representation of a semigroup S. In this paper, we prove that the mapping T_μ introduced by a mean on a subspace of $B(S)$, has many properties of the mappings in the representation S, in Banach and locally convex spaces.

Keywords: Representation; nonexpansive; attractive point; directed graph; mean.

1. **Introduction**

Suppose that C is a nonempty closed, convex subset of a reflexive Banach space E, S a semigroup, $\mathcal{S} = \{T_s : s \in S\}$ a representation of S as self mappings on C such that weak closure of $\{T_t x : t \in S\}$ is weakly compact for each $x \in C$ and X be a subspace of $B(S)$ such that the mapping $t \to \langle T(t)x, x^* \rangle$ be an element of X for each $x \in C$ and $1 \in X$ and $x^* \in E$, and μ be a mean on X. If we write $T_\mu x$ instead of $\int T_t x \, d\mu(t)$. The relations between the representation \mathcal{S} and the mapping T_μ have been interesting for many years. For example we can see [7, 8, 11, 12].

In this paper, we study some relations between the representation \mathcal{S} and T_μ in Banach and locally convex spaces.
The space of all bounded real-valued functions defined on S with supremum norm is denoted by $l^\infty(S)$. l_s and r_s in $l^\infty(S)$ are defined as follows: $(l_t g)(s) = g(ts)$ and $(r_t g)(s) = g(st)$, for all $s \in S$, $t \in S$ and $g \in l^\infty(S)$.

Suppose that X is a subspace of $l^\infty(S)$ containing 1 and let X^* be its topological dual space. An element m of X^* is said to be a mean on X, provided $\|m\| = m(1) = 1$. For $m \in X^*$ and $g \in X$, $m_t(g(t))$ is often written instead of $m(g)$. Suppose that X is left invariant (respectively, right invariant), i.e., $l_t(X) \subset X$ (respectively, $r_t(X) \subset X$) for each $s \in S$. A mean m on X is called left invariant (respectively, right invariant), provided $m(l_t g) = m(g)$ (respectively, $m(r_t g) = m(g)$) for each $t \in S$ and $g \in X$. X is called left (respectively, right) amenable if X possesses a left (respectively, right) invariant mean. X is amenable, provided X is both left and right amenable.

Let D be a directed set in X and let $\{m_\alpha : \alpha \in D\}$ \cite{1} §1.1, p. 5. A net $\{m_\alpha : \alpha \in D\}$ of means on X is called left regular, provided

$$\lim_{\alpha \in D} \|l_t^* m_\alpha - m_\alpha\| = 0,$$

for every $t \in S$, where l_t^* is the adjoint operator of l_t.

Let E be a reflexive Banach space. Let g be a function on S into E such that the weak closure of $\{g(s) : s \in S\}$ is weakly compact and suppose that X is a subspace of $l^\infty(S)$ owning all the functions $s \rightarrow \langle g(s), x^* \rangle$ with $x^* \in E^*$. We know from \cite{4} that, for any $m \in X^*$, there exists a unique element g_m in E such that $\langle g_m, x^* \rangle = m_x \langle f(s), x^* \rangle$ for all $x^* \in E^*$. We denote such g_m by $\int g(s)m(s)$. Moreover, if m is a mean on X, then from \cite{6},
\[\int g(s)m(s) \in \text{co} \{g(s) : s \in S\} \], where \(\text{co} \{g(s) : s \in S\} \) denotes the closure of the convex hull of \(\{g(s) : s \in S\} \).

Recall the following definitions:

(1) suppose that \(S \) be semigroup. Let \(C \) be a nonempty closed and convex subset of \(E \). Then, a family \(S = \{T_s : s \in S\} \) of mappings from \(C \) into itself is called a representation of \(S \) as nonexpansive mappings on \(C \) into itself if \(S \) satisfies the following:

(1) \(T_s x = T_s T_t x \) for all \(s, t \in S \) and \(x \in C \);
(2) for every \(s \in S \) the mapping \(T_s : C \to C \) is nonexpansive.

We denote by \(\text{Fix}(S) \) the set of common fixed points of \(S \), that is \(\text{Fix}(S) = \bigcap_{s \in S} \{x \in C : T_s x = x\} \).

(2) Let \(E \) be a real Banach space and \(C \) be a subset of \(E \). We denote by \(\text{Fix}(T) \) the set of fixed points of a mapping \(T : C \to C \). In this note, a mapping \(T : C \to C \) is called:

(a) nonexpansive if \(\|Tx - Ty\| \leq \|x - y\| \) for all \(x, y \in C \);
(b) quasi nonexpansive \(^{[11]} \) if \(\|Tx - f\| \leq \|x - f\| \) for all \(x \in C \) and \(f \in \text{Fix}(T) \);
(c) strongly quasi nonexpansive \(^{[11]} \) if \(\|Tx - f\| \leq \|x - f\| \) for all \(x \in C \setminus \text{Fix}(T) \) and \(f \in \text{Fix}(T) \);
(d) \(F \)-quasi nonexpansive (for a subset \(F \subseteq \text{Fix}(T) \)) if \(\|Tx - f\| \leq \|x - f\| \) for all \(x \in C \) and \(f \in \text{Fix}(T) \);
(e) strongly \(F \)-quasi nonexpansive \(^{[11]} \) (for a subset \(F \subseteq \text{Fix}(T) \)) if \(\|Tx - f\| \leq \|x - f\| \) for all \(x \in C \setminus \text{Fix}(T) \) and \(f \in \text{Fix}(T) \), and
(f) retraction \(^{[11]} \) if \(T^2 = T \).

(3) Lau and Zhang \(^{[7]} \), extend asymptotically nonexpansive definition as follows:
let E be a Banach space and $C \subset E$. A mapping $T : C \to C$ is called asymptotically nonexpansive provided for all $x, y \in C$ the following inequality holds:

1. \[
\limsup_{n \to \infty} \|T^n x - T^n y\| \leq \|x - y\|
\]

(The notion of asymptotically nonexpansive mappings was first introduced by Goebel and Kirk in 1972),

4. Suppose that $S = \{T_s : s \in S\}$ is a representation of a semigroup S on a set C in a Banach space E. An element $a \in E$ is called an asymptotically attractive point of S for C provided

2. \[
\limsup_{n \to \infty} \|a - T^n.t.x\| \leq \|a - x\|
\]

for all $t \in S$ and $x \in C$.

5. Suppose that $S = \{T_s : s \in S\}$ is a representation of a semigroup S on a set C in a Banach space E. S is called an asymptotically representation of S provided

3. \[
\limsup_{n \to \infty} \|T_i^n x - T_i^n y\| \leq \|x - y\|
\]

for all $t \in S$ and $x, y \in C$.

6. Suppose that Q is a family of seminorms on a locally convex space X which determines the topology of X and C be a nonempty closed and convex subset of X. Let $G = (V(G), E(G))$ be a directed graph such that $V(G) = C$ (to see more details refer to [5]). A mapping T of C into itself is called Q-nonexpansive if $q(Tx - Ty) \leq q(x - y)$, whenever $(x, y) \in E(G)$ for any $x, y \in C$ and $q \in Q$, and a mapping f is a Q-contraction on E if $q(f(x) - f(y)) \leq \beta q(x - y)$, for all $x, y \in E$ such that $0 \leq \beta < 1.$
(7) Suppose that Q is a family of seminorms on a locally convex space X which determines the topology of X. The locally convex topology τ_Q is separated if and only if the family of seminorms Q possesses the following property: for each $x \in X \setminus \{0\}$ there exists $q \in Q$ such that $q(x) \neq 0$ or equivalently
\[\bigcap_{q \in Q} \{ x \in X : q(x) = 0 \} = \{0\} \ (\text{see [2]}). \]

The following Lemma which we will use, is well known.

Lemma 2.1. [13, 4] Suppose that g is a function of S into E such that the weak closure of $\{g(t) : t \in S\}$ is weakly compact and let X be a subspace of $B(S)$ containing all the functions $t \to \langle g(t), x^* \rangle$ with $x^* \in E^*$. Then, for any $\mu \in X^*$, there exists a unique element g_μ in E such that
\[\langle g_\mu, x^* \rangle = \mu_t \langle g(t), x^* \rangle \]
for all $x^* \in E^*$. Moreover, if μ is a mean on X then
\[\int g(t) \, d\mu(t) \in \overline{co} \{ g(t) : t \in S \}. \]

We can write g_μ by
\[\int g(t) \, d\mu(t). \]

3. **Some results of Hahn Banach theorem**

Suppose that Q is a family of seminorms on a locally convex space X which determines the topology of X and $q \in Q$ is a seminorm. Let Y be a subset of X, we put $q_Y^*(f) = \sup \{|f(y)| : y \in Y, q(y) \leq 1\}$ and $q^*(f) = \sup \{|f(x)| : x \in X, q(x) \leq 1\}$, for every linear functional f on X. Observe that, for each $x \in X$ that $q(x) \neq 0$ and $f \in X^*$, then $|\langle x, f \rangle| \leq q(x)q^*(f)$. We will make use of the following Theorems.
Theorem 3.1. Suppose that \(Q \) is a family of seminorms on a real locally convex space \(X \) which determines the topology of \(X \) and \(q \in Q \) is a continuous seminorm and \(Y \) is a vector subspace of \(X \) such that \(Y \cap \{ x \in X : q(x) = 0 \} = \{ 0 \} \). Let \(f \) be a real linear functional on \(Y \) such that \(q_Y^*(f) < \infty \). Then there exists a continuous linear functional \(h \) on \(X \) that extends \(f \) such that \(q_Y^*(f) = q^*(h) \).

Proof. If we define \(p : X \to \mathbb{R} \) by \(p(x) = q_Y^*(f)q(x) \) for each \(x \in X \), then we have \(p \) is a seminorm on \(X \) such that \(f(x) \leq p(x) \), for each \(x \in Y \). Because, if \(x = 0 \), clearly \(f(x) = 0 \) and \(0 \leq p(x) \). On the other hand, if \(x \in Y \) and \(x \neq 0 \) then from our assumption, \(q(x) \neq 0 \) and \(q(x) = 1 \). Therefore, we have \(f(\frac{x}{q(x)}) \leq q_Y^*(f) \), then \(f(x) \leq q_Y^*(f)q(x) = p(x) \). Since \(q \) is continuous, \(p \) is also a continuous seminorm, therefore by the Hahn-Banach theorem (Theorem 3.9 in [10]), there exists a linear continuous extension \(h \) of \(f \) to \(X \) that \(h(x) \leq p(x) \) for each \(x \in X \). Hence, since \(X \) is a vector space, we have

\[(4) \quad |h(x)| \leq q_Y^*(f)q(x), (x \in X)\]

and hence, \(q^*(h) \leq q_Y^*(f) \). Moreover, since \(q_Y^*(f) = \sup\{|f(x)| : x \in Y, q(x) \leq 1\} \leq \sup\{|h(x)| : q(x) \leq 1\} = q^*(h) \), we have \(q_Y^*(f) = q^*(h) \). \(\square \)

Theorem 3.2. Suppose that \(Q \) is a family of seminorms on a real locally convex space \(X \) which determines the topology of \(X \) and \(q \in Q \) a nonzero continuous seminorm. Let \(x_0 \) be a point in \(X \). Then there exists a continuous linear functional on \(X \) such that \(q_Y^*(f) = 1 \) and \(f(x_0) = q(x_0) \).

Proof. Let \(Y := \{ y \in X : q(y) = 0 \} \). We consider two cases:

Case 1. Let \(x_0 \in Y \). Since \(q \) is continuous, \(Y \) is a closed subset of \(X \). Indeed, if \(x \in \overline{Y} \) and \(x_\alpha \in Y \) is a net such that \(x_\alpha \to x \). Then we have \(q(x) = \lim q(x_\alpha) = 0 \), hence \(x \in Y \), then \(Y \) is a closed. Let \(y_0 \) be a point in
There exists some $r > 0$ such that $q(y - y_0) > r$ for all $y \in Y$. Suppose that $Z = \{y + \alpha y_0 : \alpha \in \mathbb{R}, y \in Y\}$, the vector subspace generated by Y and y_0. Then we define $h : Z \to \mathbb{R}$ by $h(y + \alpha y_0) = \alpha$. Obviously, h is linear and we have also $r|h(y + \alpha y_0)| = r|\alpha| < |\alpha|q(\alpha^{-1}y + y_0) = q(y + \alpha y_0)$ for all $y \in Y$ and $\alpha \in \mathbb{R}$. Therefore h is a linear functional on Z that $q^*_Z(h)$ dose not exceed r^{-1}. Putting $p = r^{-1}q$, we have p is a continuous seminorm such that $h(z) \leq p(z)$ for each $z \in Z$, therefore by the Hahn-Banach theorem (Theorem 3.9 in [10]), there exists a linear continuous extension L of h to X that $L(x) \leq p(x)$ for each $x \in X$. We have also $L(x_0) = h(x_0) = q(x_0) = 0$. Now, since $q^*_Z(h) \neq 0$, we have also $q^*(L) \neq 0$, we can define $f := \frac{L}{q^*(L)}$. Hence, f is a linear continuous functional on Z that $f(x_0) = q(x_0) = 0$ and also $q^*(f) = 1$.

Case 2. Let $x_0 \notin Y$. Let $Z := \{\alpha x_0 : \alpha \in \mathbb{R}\}$ that is the vector subspace generated by x_0. If we define $h(\alpha x_0) = \alpha q(x_0)$ then h is a linear functional on Z that $h(x_0) = q(x_0)$ and also $q^*_Z(h) = 1$. Since $Z \cap Y = \{0\}$, from Theorem 3.1, there exists a continuous linear extension f of h to X such that $q^*(f) = q^*_Z(h) = 1$. Obviously, $f(x_0) = q(x_0)$.

\[\square \]

4. Main result

In the following theorem, we prove that T_μ inherits some properties of representation S in Banach spaces.

Theorem 4.1. Suppose that C is a nonempty closed, convex subset of a reflexive Banach space E, S a semigroup, $S = \{T_s : s \in S\}$ a representation of S as self mappings on C such that weak closure of $\{T_t x : t \in S\}$ is weakly compact for each $x \in C$ and X be a subspace of $B(S)$ such that the mapping $t \to \langle T(t)x, x^* \rangle$
be an element of X for each $x \in C$ and $1 \in X$ and $x^* \in E$, and μ be a mean on X. If we write $T_\mu x$ instead of $\int T_t x \, d\mu(t)$, then the following hold.

(a) If $S = \{T_s : s \in S\}$ be a representation of S as asymptotically nonexpansive self mappings on C, then T_μ is an asymptotically nonexpansive self mapping on C,
(b) $T_\mu x = x$ for each $x \in \text{Fix}(S)$,
(c) $T_\mu x \in \overline{\text{co}} \{T_t x : t \in S\}$ for each $x \in C$,
(d) if X is r_s-invariant for each $s \in S$ and μ is right invariant, then $T_\mu T_t = T_\mu$ for each $t \in S$,
(e) if $a \in X$ is an asymptotically attractive point of S, then a is an asymptotically attractive point of T_μ,
(f) let $S = \{T_s : s \in S\}$ be a representation of S as affine self mappings on C, then T_μ is an affine self mapping on C,
(g) let P be a self mappings on C that commutes with $T_s \in S = \{T_s : s \in S\}$ for each $s \in S$ then T_μ commutes with P,
(h) let $S = \{T_s : s \in S\}$ be a representation of S as quasi nonexpansive self mappings on C, then T_μ is a $\text{Fix}(S)$-quasi nonexpansive self mapping on C,
(i) let $S = \{T_s : s \in S\}$ be a representation of S as F-quasi nonexpansive self mappings on C (for a subset $F \subseteq \text{Fix}(S)$), then T_μ is an F-quasi nonexpansive self mapping on C,
(j) let $S = \{T_s : s \in S\}$ be a representation of S as strongly F-quasi nonexpansive self mappings on C (for a subset $F \subseteq \text{Fix}(S)$), then T_μ is an strongly F-quasi nonexpansive self mapping on C,
(k) let $S = \{T_s : s \in S\}$ be a representation of S as retraction self mappings on C, then T_μ is a retraction self mapping on C,
(l) let $E = H$ be a Hilbert space and $S = \{T_s : s \in S\}$ be a representation of S as monotone self mappings on H, then T_μ is a monotone self mapping on H.

Proof. (a) Since S is a representation as asymptotically nonexpansive self mappings on C, from part (b) of Theorem 3. 1 7 in [9] there exists an integer $m_0 \in \mathbb{N}$ such that

$$\sup_{t \in S} \|T^n_t x - T^n_t y\| \leq \|x - y\|$$

for all $n \geq m_0$, $x, y \in C$. Suppose that $x^*_1 \in J(T^n_\mu x - T^n_\mu y)$ and $x, y \in C$. We know from [4] that, for any $\mu \in X^*$, there exists a unique element f_μ in E such that

$$\langle f_\mu, x^*_1 \rangle = \mu_s \langle f(s), x^*_1 \rangle$$

for all $x^*_1 \in E^*$. Then for all $n \geq m_0$, $x, y \in C$ and $t \in S$ we have

$$\|T^n_\mu x - T^n_\mu y\|^2 = \langle T^n_\mu x - T^n_\mu y, x^*_1 \rangle = \mu_t \langle T^n_t x - T^n_t y, x^*_1 \rangle$$

$$\leq \sup_t \|T^n_t x - T^n_t y\| \|T^n_t x - T^n_t y\|$$

$$\leq \|x - y\| \|T^n_\mu x - T^n_\mu y\|,$$

hence for all $n \geq m_0$, $x, y \in C$ we have

$$\|T^n_\mu x - T^n_\mu y\| \leq \|x - y\|,$$

therefore we have

$$\limsup_{n \to \infty} \|T^n_\mu x - T^n_\mu y\| \leq \|x - y\|.$$

(b) suppose that $x \in \text{Fix}(S)$ and $x^* \in E^*$. Therefore we have

$$\langle T_\mu x, x^* \rangle = \mu_t \langle T_t x, x^* \rangle = \mu_t \langle x, x^* \rangle = \langle x, x^* \rangle$$
(c) this assertion concludes from Lemma 2.1.
(d) to prove this assertion, we have
\[\langle T_\mu(T_s x), x^* \rangle = \mu t \langle T_s x, x^* \rangle = \mu t \langle T x, x^* \rangle = \langle T_\mu x, x^* \rangle, \]
(e) suppose that \(x_2^* \in J(a - T^n_\mu x), \)
\[\|a - T^n_\mu x\|^2 = \langle a - T^n_\mu x, x_2^* \rangle = \mu t \langle a - T^n x, x_2^* \rangle \]
\[\leq \sup_t \|a - T^n x\| \|a - T^n_\mu x\| \]
\[\leq \|a - x\| \|a - T^n_\mu x\|, \]
hence for all \(n \geq m_0, x \in C \) we have
\[\|a - T^n_\mu x\| \leq \|a - x\|, \]
therefore we have
\[\limsup_{n \to \infty} \|a - T^n_\mu x\| \leq \|a - x\|. \]
(f) Suppose that \(x_1^* \in E^*. \) Then for all positive integers \(\alpha, \beta \) such that \(\alpha + \beta = 1, x, y \in C \) and \(t \in S \) we have
\[\langle T_\mu(\alpha x + \beta y), x_1^* \rangle = \mu t \langle T_t(\alpha x + \beta y), x_1^* \rangle \]
\[= \mu t \langle \alpha T_t x + \beta T_t y, x_1^* \rangle \]
\[= \alpha \mu t \langle T_t x, x_1^* \rangle + \beta \mu t \langle T_t y, x_1^* \rangle \]
\[= \alpha \langle T_\mu x, x_1^* \rangle + \beta \langle T_\mu y, x_1^* \rangle \]
\[= \langle \alpha T_\mu x + \beta T_\mu y, x_1^* \rangle \]
hence, we have
\[T_\mu(\alpha x + \beta y) = \alpha T_\mu x + \beta T_\mu y. \]
(g) Let \(P \) commutes with \(T_s \in \mathcal{S} = \{T_s : s \in S\} \) for each \(s \in S \) and \(x^*_1 \in E^* \). Then from (5), for each \(x \in C \) and \(t \in S \) we have

\[
\langle T_\mu Px, x^*_1 \rangle = \mu_t \langle T_t Px, x^*_1 \rangle \\
= \mu_t \langle PT_t x, x^*_1 \rangle \\
= \langle PT_\mu x, x^*_1 \rangle,
\]

then \(T_\mu P = PT_\mu \).

(h) Let \(\mathcal{S} = \{T_s : s \in S\} \) be a representation of \(S \) as quasi nonexpansive self mappings on \(C \), then for each \(t \in S \) we have \(\|T_t x - f\| \leq \|x - f\| \) for each \(f \in \text{Fix}(T_t) \) and \(x \in C \). Suppose that \(f \in \text{Fix}(\mathcal{S}) \) and \(x^*_2 \in J(T_\mu x - f) \), then from (5), we have

\[
\|T_\mu x - f\|^2 = \langle T_\mu x - f, x^*_2 \rangle = \mu_t \langle T_t x - f, x^*_2 \rangle \\
\leq \sup_t \|T_t x - f\| \|T_\mu x - f\| \\
\leq \|x - f\| \|T_\mu x - f\|,
\]

then we have

\[
\|T_\mu x - f\| \leq \|x - f\|,
\]

then \(T_\mu \) is a \(\text{Fix}(\mathcal{S}) \)-quasi nonexpansive self mapping on \(C \).

(i) Let \(\mathcal{S} = \{T_s : s \in S\} \) be a representation of \(S \) as \(F \)-quasi nonexpansive self mappings on \(C \) that \(F \subseteq \text{Fix}(\mathcal{S}) \), then for each \(t \in S \) we have \(\|T_t x - f\| \leq \|x - f\| \) for each \(f \in F \) and \(x \in C \). Suppose that \(f \in F \), \(x \in C \) and
\[x_2^* \in J(T_\mu x - f), \text{ then from (5), we have} \]
\[\|T_\mu x - f\|^2 = \langle T_\mu x - f, x_2^* \rangle = \mu_t \langle T_t x - f, x_2^* \rangle \]
\[\leq \sup_t \|T_t x - f\| \|T_\mu x - f\| \]
\[\leq \|x - f\| \|T_\mu x - f\|, \]
then we have
\[\|T_\mu x - f\| \leq \|x - f\|, \]
then \(T_\mu \) is an \(F \)-quasi nonexpansive self mapping on \(C \).

(j) Let \(S = \{T_s : s \in S\} \) be a representation of \(S \) as strongly \(F \)-quasi nonexpansive self mappings on \(C \) such that \(F \subseteq \text{Fix}(S) \), then for each \(t \in S \) we have \(\|T_t x - f\| < \|x - f\| \) for each \(x \in C \setminus F \) and \(f \in F \). Suppose that \(f \in F, x \in C \setminus F \) and \(x_2^* \in J(T_\mu x - f) \), then from (5), we have
\[\|T_\mu x - f\|^2 = \langle T_\mu x - f, x_2^* \rangle = \mu_t \langle T_t x - f, x_2^* \rangle \]
\[\leq \sup_t \|T_t x - f\| \|T_\mu x - f\| \]
\[< \|x - f\| \|T_\mu x - f\|, \]
then we have
\[\|T_\mu x - f\| < \|x - f\|, \]
then \(T_\mu \) is a strongly \(F \)-quasi nonexpansive self mapping on \(C \).

(k) Let \(S = \{T_s : s \in S\} \) be a representation of \(S \) as retraction self mappings on \(C \), then for each \(t \in S \) we have \(T_t^2 = T_t \). Suppose that \(x \in C \)
and \(x_1^* \in E^*\), then from (5), we have
\[
\langle T^2_\mu x, x_1^* \rangle = \mu_t \langle T^2_t x, x_1^* \rangle \\
= \mu_t \langle T_t x, x_1^* \rangle \\
= \langle T_\mu x, x_1^* \rangle,
\]
then \(T^2_\mu = T_\mu\).

(l) Since \(T_s\) is monotone for every \(s \in S\), then we have \(\langle T_s x - T_s y, x - y \rangle \geq 0\) for every \(x, y \in H\) and \(s \in S\). As in the proof of Theorem 1.4.1 in [14] we know that \(\mu\) is positive i.e., \(\langle \mu, f \rangle \geq 0\) for each \(f \in X\) that \(f \geq 0\). Then for each \(x, y \in H\), from (5) we have
\[
\langle T_\mu x - T_\mu y, x - y \rangle = \mu_t \langle T_t x - T_t y, x - y \rangle \geq 0,
\]
then \(T_\mu\) is a monotone self mapping on \(H\).

We will need the following Theorem.

Theorem 4.2. Let \(S\) be a semigroup, \(E\) be a real dual locally convex space with real predual locally convex space \(D\) and \(U\) a convex neighbourhood of 0 in \(D\) and \(p_U\) be the associated Minkowski functional. Let \(f : S \to E\) be a function such that \(\langle x, f(t) \rangle \leq 1\) for each \(t \in S\) and \(x \in U\). Let \(X\) be a subspace of \(B(S)\) such that the mapping \(t \to \langle x, f(t) \rangle\) be an element of \(X\), for each \(x \in D\). Then, for any \(\mu \in X^*\), there exists a unique element \(F_\mu \in E\) such that \(\langle x, F_\mu \rangle = \mu_t \langle x, f(t) \rangle\), for all \(x \in D\). Furthermore, if \(1 \in X\) and \(\mu\) is a mean on \(X\), then \(F_\mu\) is contained in \(\text{co}\{f(t) : t \in S\}^{\omega^*}\).
Proof. We define F_μ by $\langle x, F_\mu \rangle = \mu_t \langle x, f(t) \rangle$ for all $x \in D$. Obviously, F_μ is linear in x. Moreover, from Proposition 3.8 in [10], we have

$$|\langle x, F_\mu \rangle| = |\mu_t \langle x, f(t) \rangle| \leq \sup_t |\langle x, f(t) \rangle| \|\mu\| \leq P_U(x) \|\mu\|,$$

for all $x \in D$. Let (x_α) be a net in D that converges to x_0. Then by (6) we have

$$|\langle x_\alpha, F_\mu \rangle - \langle x_0, F_\mu \rangle| = |\langle x_\alpha - x_0, F_\mu \rangle| \leq P_U(x_\alpha - x_0) \|\mu\|,$$

taking limit, since from Theorem 3.7 in [10], P_U is continuous, we have F_μ is continues on D, hence $F_\mu \in E$.

Now, let $1 \in X$ and μ be a mean on X. Then, there exists a net $\{\mu_\alpha\}$ of finite means on X such that $\{\mu_\alpha\}$ converges to μ with the weak* topology on X^*. We may consider that

$$\mu_\alpha = \sum_{i=1}^{n_\alpha} \lambda_{\alpha,i} \delta_{t_{\alpha,i}}.$$

Therefore,

$$\langle x, F_{\mu_\alpha} \rangle = (\mu_\alpha)_t \langle x, f(t) \rangle = \langle x, \sum_{i=1}^{n_\alpha} \lambda_{\alpha,i} f(t_{\alpha,i}) \rangle, (\forall x \in D, \forall \alpha),$$

then we have

$$F_{\mu_\alpha} = \sum_{i=1}^{n_\alpha} \lambda_{\alpha,i} f(t_{\alpha,i}) \in \text{co}\{f(t) : t \in S\}, (\forall \alpha),$$

now since,

$$\langle x, F_{\mu_\alpha} \rangle = (\mu_\alpha)_t \langle x, f(t) \rangle \to \mu_t \langle x, f(t) \rangle = \langle x, f(t) \rangle, (x \in D),$$
\(\{F_{\mu_n}\} \) converges to \(F_\mu \) in the weak\(^*\) topology. Hence
\[
F_\mu \in \text{co}\{f(t) : t \in S\}^{\omega^*},
\]
we can write \(F_\mu \) by \(\int f(t) d\mu(t) \).

In the following theorem, we prove that \(T_\mu \) inherits some properties of representation \(S \) in locally convex spaces.

Theorem 4.3. Let \(S \) be a semigroup, \(C \) a closed convex subset of a real locally convex space \(E \). Let \(G = (V(G), \mathcal{E}(G)) \) a directed graph such that \(V(G) = C \). Let \(\mathcal{B} \) be a base at 0 for the topology consisting of convex, balanced sets. Let \(Q = \{q_V : V \in \mathcal{B}\} \) which \(q_V \) is the associated Minkowski functional with \(V \). Let \(S = \{T_s : s \in S\} \) be a representation of \(S \) as \(Q\)-\(G \)-nonexpansive mappings from \(C \) into itself and \(X \) be a subspace of \(B(S) \) such that \(1 \in X \) and \(\mu \) be a mean on \(X \) such that the mapping \(t \rightarrow \langle T_t x, x^* \rangle \) is an element of \(X \) for each \(x \in C \) and \(x^* \in E^* \). If we write \(T_\mu x \) instead of \(\int T_t x d\mu(t) \), then the following hold.

(i) \(T_\mu \) is a \(Q\)-\(G \)-nonexpansive mapping from \(C \) into \(C \),

(ii) \(T_\mu x = x \) for each \(x \in \text{Fix}(S) \),

(iii) If moreover \(E \) is a real dual locally convex space with real predual locally convex space \(D \) and \(C \) a \(w^* \)-closed convex subset of \(E \) and \(U \) a convex neighbourhood of 0 in \(D \) and \(p_U \) is the associated Minkowski functional.

Let the mapping \(t \rightarrow \langle z, T_t x \rangle \) is an element of \(X \) for each \(x \in C \) and \(z \in D \) then \(T_\mu x \in \text{co} \{T_t x : t \in S\}^{\omega^*} \) for each \(x \in C \),

(iv) if \(X \) is \(r_s \)-invariant for each \(s \in S \) and \(\mu \) is right invariant, then \(T_\mu T_t = T_\mu \) for each \(t \in S \),

(v) if \(a \in E \) is an \(Q\)-\(G \)-attractive point of \(S \) then \(a \) is an \(Q\)-\(G \)-attractive point of \(T_\mu \).
Proof. (i) Let \(x, y \in C \) and \(V \in \mathcal{B} \). By Proposition 3.33 in [10], the topology on \(E \) induced by \(Q \) is the original topology on \(E \). By Theorem 3.7 in [10], \(q_V \) is a continuous seminorm and from Theorem 1.36 in [9], \(q_V \) is a nonzero seminorm because if \(x \notin V \) then \(q_V(x) \geq 1 \), hence from Theorem 3.2, there exists a functional \(x^*_V \in X^* \) such that \(q_V(T_\mu x - T_\mu y) = \langle T_\mu x - T_\mu y, x^*_V \rangle \) and \(q^*_V(x^*_V) = 1 \), and since from Theorem 3.7 in [10], \(q_V(z) \leq 1 \) for each \(z \in V \), we conclude that \(\langle z, x^*_V \rangle \leq 1 \) for all \(z \in V \). Therefore from Theorem 3.8 in [10], \(\langle z, x^*_V \rangle \leq q_V(z) \) for all \(z \in E \). Hence for each \(t \in S, x, y \in C \) that \((x, y) \in E(G) \) and \(x^* \in E^* \), from (5), we have

\[
q_V(T_\mu x - T_\mu y) = \langle T_\mu x - T_\mu y, x^*_V \rangle = \mu_t \langle T_t x - T_t y, x^*_V \rangle \\
\leq \|\mu\| \sup_t |\langle T_t x - T_t y, x^*_V \rangle| \\
\leq \sup_t q_V(T_t x - T_t y) \\
\leq q_V(x - y),
\]

then we have

\[
q_V(T_\mu x - T_\mu y) \leq q_V(x - y),
\]

for all \(V \in \mathcal{B} \).

(ii) Let \(x \in Fix(S) \) and \(x^* \in E^* \). Then we have

\[
\langle T_\mu x, x^* \rangle = \mu_t \langle T_t x, x^* \rangle = \mu_t \langle x, x^* \rangle = \langle x, x^* \rangle
\]

(iii) this assertion concludes from Theorem 4.2.

(iv) for this assertion, note that

\[
\langle T_\mu(T_{sx})x^*, x^* \rangle = \mu_t \langle T_{ts}x, x^* \rangle = \mu_t \langle T_t x, x^* \rangle = \langle T_\mu x, x^* \rangle
\]
(v) Let $x \in C$ and $V \in \mathcal{B}$. From Theorem 3.2, there exists a functional $x^*_V \in X^*$ such that $q_V(a - T_\mu x) = \langle a - T_\mu x, x^*_V \rangle$ and $q^*_V(x^*_V) = 1$. Since from Theorem 3.7 in [10], $q_V(z) \leq 1$ for each $z \in V$, we conclude that $\langle z, x^*_V \rangle \leq 1$ for all $z \in V$. Therefore from Theorem 3.8 in [10], $\langle z, x^*_V \rangle \leq q_V(z)$ for all $z \in E$. Hence for each $t \in S$, $x, y \in C$ that $(x, y) \in E(G)$ and $x^* \in E^*$, from (5), we have

$$q_V(a - T_\mu x) = \langle a - T_\mu x, x^*_V \rangle = \mu_t \langle a - T_t x, x^*_V \rangle$$

$$\leq \|\mu\| \sup_t |\langle a - T_t x, x^*_V \rangle|$$

$$\leq \sup_t q_V(a - T_t x)$$

$$\leq q_V(a - x),$$

then we have

$$q_V(a - T_\mu x) \leq q_V(a - x),$$

for all $V \in \mathcal{B}$.

\[\square \]

References

