International Conference on Mathematics of Fuzziness
ICMF

Abstract Book

Department of Mathematics
Institute for Advanced Studies in Basic Sciences (IASBS)
Zanjan

May 8, 2016
Preface

The International Conference on Mathematics of Fuzziness (ICMF) is organized by Institute for Advanced Studies in Basic Sciences (IASBS), in cooperation with Iranian fuzzy systems society on April 27-29, 2016. ICMF is aimed to bring experts and researchers who are working on mathematical foundations of fuzzy sets and systems and their applications.

The conference provides a platform for researchers and practitioners to interact with each other and discuss the state-of-the-art developments in the field. ICMF brings together scientists, engineers, students, and practitioners working in fuzzy logic and related areas to present their recent research accomplishments.

The topics of the conference cover all aspects of theoretical researches and applications in fuzzy systems and soft computing, including but not limited to:

- Mathematical foundations of fuzzy sets and fuzzy systems;
- Mathematical fuzzy logic;
- Fuzzy differential equations and set valued differential equations;
- Interval analysis and Interval differential equations;
- Fuzzy optimization and fuzzy Linear systems;
- Fuzzy approximations, fuzzy arithmetic and ranking of fuzzy numbers;
- Fuzzy analysis and algebra;
- Type-2 fuzzy systems and modeling;
- Fuzzy probability and statistics;
- Fuzzy neural networks and fuzzy control;
- Approximate reasoning, fuzzy inference models and soft computing;
- Fuzzy data analysis, fuzzy clustering, classification and pattern recognition;
- Applications of fuzzy mathematics in the real world problems.

We would like to thank all of the participants, the members of the organizing and scientific committee and most importantly the administration staff of IASBS for putting this conference together.

Alireza Khastan
Chair of ICMF
Scientific Committee

- S. Abbasbandy (Imam Khomeini Int. University, Iran)
- R.P. Agarwal (Texas AM University, USA)
- R. Ameri (University of Tehran, Iran)
- F. Bahrami (University of Tabriz, Iran)
- D. Baleanu (Institute of Space Sciences, Romania)
- A.I. Ban (University of Oradea, Romania)
- B. Bede (DigiPen Institute of Technology, USA)
- R.A. Borzooei (Shahid Beheshti University, Iran)
- Y. Chalco-Cano (University of Tarapac, Chile)
- B. De Baets (Ghent University, Belgium)
- N. Din Phu (University of Science, Vietnam)
- Ş. Emrah Amrahov (Ankara University, Turkey)
- A. Fikret (Institute of Applied Mathematics, Azerbaijan)
- K. Ivaz (University of Tabriz, Iran)
- R. Langari (Texas AM University, USA)
- V. Lupulescu (University of Targu-Jiu, Romania)
- M. Mashinchi (Shahid Bahonar University of Kerman, Iran)
- J.J. Nieto (University of Santiago de Compostela, Spain)
- V. Novak (University of Ostrava, Czech Republic)
- I. Perfílieva (University of Ostrava, Czech Republic)
- D. Qiu (Chongqing Univ. of Posts and Telecommunications, China)
- J.H. Yoon (Sejong University, South Korea)
- M.M. Zahedi (Tarbiat Modares University, Iran)

Organizing Committee

- S. Arshad (Chinese Academy of Sciences, China)
- Ş. Emrah Amrahov (Ankara University, Turkey)
- A. Ghorbanalizadeh (IASBS, Iran)
- M. Khezerloo (IASBS, Iran)
- S. Khodayifar (IASBS, Iran)
- K. Nedaaiasl (IASBS, Iran)
- I. Perfílieva (University of Ostrava, Czech Republic)
- B. Sadeghi Bigham (IASBS, Iran)
- R. Zaare-Nahandi (IASBS, Iran)
Students group in organizing committee

- Nahideh Asadi
- Seyavash Asgari
- Davood Babaloo
- Zoya Masih
- Maryam Moomivand
- Samira Nooralidokht
- Aysan Rafiee
- Davood Rahmani
- Rana Shokri
- Sobhan Zarrin Pour
Pelanery Lectures

<table>
<thead>
<tr>
<th>Name</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vilém Novák</td>
<td>On Tools for Linguistic Fuzzy Modeling</td>
<td>1</td>
</tr>
<tr>
<td>Fariba Bahrami</td>
<td>On Fuzzy Partial Differential Equations</td>
<td>4</td>
</tr>
<tr>
<td>IrinaPerfilieva</td>
<td>Mathematical Problems Where Fuzzy Models Are Efficient and Competitive</td>
<td>5</td>
</tr>
<tr>
<td>Reza Ameri</td>
<td>From Fuzzy Vector Spaces to Fuzzy Hyperspaces: A Brief Survey</td>
<td>9</td>
</tr>
<tr>
<td>Saeid Abbasbandy</td>
<td>Fuzzy Interpolation</td>
<td>11</td>
</tr>
</tbody>
</table>

Talks

<table>
<thead>
<tr>
<th>Name</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Holčapek and L. Nguyen</td>
<td>On a computation of higher degree fuzzy transform components</td>
<td>13</td>
</tr>
<tr>
<td>M. Holčapek and L. Nguyen</td>
<td>Suppression high frequencies in time using fuzzy transform of higher degree</td>
<td>18</td>
</tr>
<tr>
<td>M. Zeinali and G. Eslami</td>
<td>Fuzzy form of the particle equation of motion in the unsteady Stokes flow</td>
<td>23</td>
</tr>
<tr>
<td>Z. Alijani, A. Khashan</td>
<td>Fuzzy logistic difference equation</td>
<td>27</td>
</tr>
<tr>
<td>S. Ziari</td>
<td>Approximation properties of fuzzy transform based on wavelets, block pulse and exponential-Shepard kernels</td>
<td>31</td>
</tr>
<tr>
<td>S. Hajighasemi</td>
<td>Fuzzy similarity measure for generalized fuzzy numbers</td>
<td>35</td>
</tr>
<tr>
<td>F. Bahrami and S. Parvizi</td>
<td>Uncertain differential-Algebraic systems with fractional order</td>
<td>39</td>
</tr>
<tr>
<td>F. Bahrami and S. Mirzajani</td>
<td>Mass-Spring-Damper System with uncertainty</td>
<td>44</td>
</tr>
</tbody>
</table>
Z. Masoumi, A. Rezaei and J. Maleki, Estimation of representative groundwater hydrograph using fuzzy calculations and kriging algorithm

Z. Sadeghi and M. Farmani, Fixed point theorems for multivalued mappings in fuzzy metric spaces

H. R. Khairabadi and H. R. Goudarzi, F-Bounded sets in fuzzy normed spaces

M. Abry and J. Zanjani, On Almost Zero-dimensional Fuzzy Topological Spaces

M. Niknam, Strong solutions of fuzzy linear systems

R. A. Borzooei, E. Darabian and H. Rashmanlou, Strong Domination Number of Vague Graphs with Applications

S. Kordrostami and M. Jahani S. Noveiri, Fuzzy Integer-Valued Data Envelopment Analysis with Restricted Variation

A. Taghavi and E. Eslami, A Note on An information fusion approach by combining multigranulation rough sets and evidence theory

Y. Talebi and M. Sadeghi, Residual Division fuzzy Γ- hyperideal

M. Yarahmadi and S. Chegini, intelligent Quantum Sliding Mode Control

M. Yarahmadi, S. Chegini and Z. Sahebi, Indirect fuzzy sliding mode control with varying boundary layer via time-variant sliding function

S. Saidi Goraghani and R. A. Borzooei, Prime Avoidance of A-Ideals in MV -modules

S. Saidi Goraghani and R. A. Borzooei, Fuzzy Prime Ideals in PMV -algebras

R. Mahjoob and V. Ghaffari, Second Fuzzy Submodules

R. Mahjoob and S. Qiami, On radical of Fuzzy submodules
M. Norouzi, A subhypermodule of an associated hypermodule of a fuzzy hypermodule which can be seen as a subfuzzy hypermodule

M. Kuchaki Rafsanjani, L. Aliahmadipour and V. Torra, An application of Hesitant Fuzzy Sets to elect an efficient Cluster Head in Ad Hoc Networks

L. Hooshyar, A. Khabast, a new approach to analyze the similarity of biological sequences and classification them by fuzzy clustering

M. H. Olyae and A. Khanteemyoorri, Fuzzy c-means clustering for SNP haplotype reconstruction problem

P. Vlašánek and I. Perfilieva, Initial Value Problem in Image Reconstruction

A. A. Hosseinzadeh, Ranking trapezoidal fuzzy numbers by support points

H. Fatemidokht and M. Kuchaki Rafsanjani, An intrusion detection system based on type-2 fuzzy neural networks

T. Nozari, On the n^* and γ^*_n complete fuzzy hypergroups

A. Borumand Saeid, S. Zahiri, M. Zahiri, On co- anihilators in triangle algebras

F. Forouzesh, Fuzzy semi-maximal ideals in MV-algebras

I. Perfilieva and P. Hodáková and R. Valášek, F-transform for a Boundary Value Problem

S. Siahmansouri and M. Gachpazan, Existence, uniqueness and stability of fuzzy delay differential equations with Local Lipschitz and Linear growth conditions

R. Ezzati, H. Nouriani and A. Mashhadi Gholam, Solving linear fuzzy Fredholm integral equations via iterative method and Simpson quadrature rule
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Khezerloo</td>
<td>The Numerical Solution for Integrated Form of First Order Fuzzy Differential Equations</td>
<td>169</td>
</tr>
<tr>
<td>M. Saheli</td>
<td>On fuzzy topology and fuzzy metric</td>
<td>174</td>
</tr>
<tr>
<td>S. Moghari and M. M. Zahedi</td>
<td>Hypercomplex L-valued Tree Automata</td>
<td>178</td>
</tr>
<tr>
<td>M. Ghorani</td>
<td>A reduction algorithm for fuzzy coding tree automata</td>
<td>182</td>
</tr>
<tr>
<td>A. Saeidi Rasholia</td>
<td>A Review on fuzzy automata</td>
<td>186</td>
</tr>
<tr>
<td>M. Shamsizadeh and M. M. Zahedi</td>
<td>Quotient BL- intuitionistic general L-fuzzy automata</td>
<td>191</td>
</tr>
<tr>
<td>H. Rouhparvar</td>
<td>Approximation of functions by the fuzzy system</td>
<td>195</td>
</tr>
<tr>
<td>R. Ameri, M. Asghari-Larimi and N. Firouzkouhi</td>
<td>Strongly Transitive Fuzzy Geometric Spaces Associated to Fuzzy Semihypergroups and Hypergroups</td>
<td>198</td>
</tr>
<tr>
<td>E. Mohammadzadeh and R. Ameri</td>
<td>Construction of Engel groups by fuzzy hypergroups</td>
<td>202</td>
</tr>
<tr>
<td>M. Ghaznavi and N. Hoseinpoor</td>
<td>A Quasi-Newton method for fuzzy multiobjective optimization problems</td>
<td>206</td>
</tr>
<tr>
<td>F. Tchier and Z. Alijani</td>
<td>On the fuzzy difference equation of higher order</td>
<td>210</td>
</tr>
</tbody>
</table>
S. M. Amin Khatami, Additive Gödel Logic: An enriched Gödel logic with Lukasiewicz connectives

A. H. Sharafi, R. A. Borzooei and H. Farahani, A Fuzzy Epistemic Logic

R. Tayebi Khorami and A. Borumand Saeid, Special elements in Residuated lattices

H. Farahani, S. M. Mousavi, An Extended Fuzzy Turing Machine

Ş. Emrah Amrahov, N. Gasilov and A. Golayoğlu Fatullayev, Fuzzy Linear Time-Optimal Control Problem

N. Abbasi and H. Mottaghi Golshan, Equivalences of Caristi’s fixed point theorem in fuzzy metric spaces

E. Ranjbar-Yanehsari, M. Asghari-Larimi, A new kind fuzzy vector space over fuzzy field
Plenary Lectures
L. A. Zadeh, the founder of fuzzy set theory, demonstrated in many of his papers (see [7, 9, 10, 11, 12]), that his theory makes it possible to develop a special mathematical model of the semantics of some expressions of natural language and to apply it in solution of various practical problems. One of the most successful applications of this methodology is fuzzy control ([2, 8]). The main reason for such success is the possibility to realize control by transforming operator’s (expert’s) knowledge formulated in natural language into an algorithm.

The fundamental role in these applications is played by expressions of natural language such as “small, very weak, medium, extremely large, significantly expensive” etc. Zadeh suggested to model their meaning using special fuzzy sets defined on an ordered universe. Moreover, he also came with the idea that semantics of the, so called, linguistic hedges can be modeled by special operations on the corresponding membership functions. This made it possible to compute semantics of more complex expressions.

Many papers that appeared in recent years are focused on the topic of linguistic fuzzy models. A closer inspection of them, however, discloses that they deal with categories characterized by verbal labels taken from a fuzzy rating scale rather than with linguistic expressions.

In this talk we will explain the distinction between verbal labels and a special class of linguistic expressions called evaluative. We will provide a brief linguistic analysis of evaluative linguistic expressions and show that (mathematical) fuzzy logic makes it possible to develop an advanced mathematical model of their semantics. One of the results are algorithms that behave as if “understanding” linguistic expressions.

Then we will analyze the concept of a fuzzy rating scale with verbal labels, describe their semantics and demonstrate that they should not
be identified with the evaluative linguistic expressions. Finally, we suggest a method for construction of verbal labels from the latter.

The theory of evaluative expressions is a part of a wider program of fuzzy natural logic (FNL). Its goal is to develop a mathematical model of human reasoning whose typical feature is the use of natural language. Among results of FNL, let us mention the sophisticated theory of intermediate (linguistic) quantifiers or an inference method called Perception-based Logic Deduction (PbLD) (cf., [1, 3, 5]) that effectively works with evaluative expression.

PbLD was already applied many times in control, multiple-criteria decision-making, time-series forecasting, and other ones. It can be demonstrated that using PbLD, we can control a wide variety of processes such as helicopter, magnetic levitation, water tank level and many other kinds of special appliances. We can also apply it in sophisticated decision making problems [6], in forecasting of time series and mining non-trivial information from them [4], and various other areas. We conclude that a realistic mathematical model of the semantics of (some parts of) natural language is a strong tool using which we can realize applications in which information is provided in genuine natural language and which lead to systems that function as if “understanding” it.

REFERENCES

