The intermolecular complexes of SSF₂ with HF, H₂O, NH₃, HCN and CH₃OH molecules

Abedien Zabardasti, Aliyar Mahdizadeh & Saeid Farhadi

To cite this article: Abedien Zabardasti, Aliyar Mahdizadeh & Saeid Farhadi (2016): The intermolecular complexes of SSF₂ with HF, H₂O, NH₃, HCN and CH₃OH molecules, Journal of Sulfur Chemistry, DOI: 10.1080/17415993.2016.1246550

To link to this article: http://dx.doi.org/10.1080/17415993.2016.1246550

Published online: 17 Nov 2016.
The intermolecular complexes of SSF$_2$ with HF, H$_2$O, NH$_3$, HCN and CH$_3$OH molecules

Abedien Zabardasti, Aliyar Mahdizadeh and Saeid Farhadi

Department of Chemistry, Lorestan University, Khorramabad, Iran

ABSTRACT

Intermolecular complexes of thiothionyl-fluoride (SSF$_2$) with HY molecules (HY = HF, H$_2$O, NH$_3$, HCN and CH$_3$OH) have been studied theoretically at the MP2/aug-cc-pVTZ computational level. The SSF$_2$ can have both hydrogen and chalcogen-bond (CB) interactions with HY molecules. The central S atom of SSF$_2$ as a better electron acceptor gives stronger adducts with HY molecules. CB interactions for the central S atom correlate with red shift of the S=S band. The QTAIM and NBO analyses were carried out on SSF$_2$ complexes.

ARTICLE HISTORY
Received 26 May 2016
Accepted 6 October 2016

KEYWORDS
Theoretical study; hydrogen bonding; chalcogen bonding; QTAIM; thiothionyl-fluoride; NBO

1. Introduction

Throughout the last decades, a growing amount of experimental and theoretical effort has been devoted to non-covalent interactions due to their widespread importance in many fields of chemistry and biochemistry [1–3]. Although investigations have usually focused on the most common hydrogen-bond non-covalent interaction, recently, attention for other types of intermolecular interactions, such as halogen bond [4–6] and chalcogen bond (CB), has grown [7].

Another type of the intermolecular interaction the so-called the σ-hole was first proposed by Politzer et al. [8–12] The ‘σ-hole’ concept refers to the electron-deficient outer lobe of a p orbital, which can act as an electron-pair acceptor from a Lewis base. Thus, halogen bonding is derived from σ-hole bonding [8–11]. The σ-hole interaction is also